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The electron relaxation time, sI , for ionized impurity scattering in heavily compensated

Hg
1~x

Cd
x
Te (x&0.2) is calculated. The Kane model of band structure is used. The

sI expression differs from that of Szymanska—Dietl because in heavily compensated

materials the Brooks—Herring scattering potential is not adapted. The relaxation time

depends essentially on the pair correlation function between acceptors and donors.

Acceptor and donor concentrations using the Szymanska—Dietl model and our model have

been determined for two samples.
1. Introduction
Hg

1~x
Cd

x
Te (MCT), Hg

1~x
Zn

x
Te or Hg

1~x
Cd

x
Se

are II—VI compound semiconductors whose energy
gaps vary with the content, x, of cadmium or zinc
[1, 2]. MCT (x&0.2) can be used to make infrared
detectors operating in the 8—12 lm atmospheric win-
dow [3—4]. The efficiency of these detectors is condi-
tioned by the quality of the active layer. Characteriza-
tion of this active layer can be done using Hall and
resistivity measurements at low temperature
(¹(60K). Carrier mobility can then be deduced in
this temperature range where the effects of phonons
are weak and carriers are mainly scattered by the
electric field of ionized impurities. A compensated
n-type semiconductor contains donors (concentration:
N`

D
) and acceptors (N~

A
), so the corresponding mobil-

ity is a function of N`
D
#N~

A
, whereas N`

D
!N~

A
oc-

curs in the neutrality equation. We can thus obtain
N`

D
and N~

A
separately by solving both equations

simultaneously. We will therefore be able to obtain the
total concentrations and energy levels of the doping
impurities from thermal variation of their ionic con-
centrations.

Hg
1~x

Cd
x
Te with x)0.2 is a narrow or zero gap

semiconductor (NGS or ZGS). One of the conse-
quences of this situation is the non-parabolicity of the
bands studied by Groves et al. in HgTe [5] and by
Pidgeon and Brown in InSb [6]. Kane’s model [7] is
generally used to describe the conduction band of
NGS or ZGS. The small effective density of states in
the conduction band very often induces degeneracy
for n-type materials.

Several papers have reported experimental and the-
oretical studies of carrier mobility in NGS or ZGS
[8—13]. Szymanska and Dietl [11] established the

relaxation time due to ionized impurity scattering for

0022—2461 ( 1997 Chapman & Hall
NGS or ZGS. Their expression rests on the
Brooks—Herring type Fourier transform of the diffus-
ing potential [14]. We show, in Section 2, that this
treatment is not applicable in heavily compensated
n-type Hg

1~x
Cd

x
Te (0.19)x)0.21). Considering

this situation in Section 3, we develop an expression of
the electron relaxation time for ionized impurity scat-
tering. We follow the Szymanska—Dietl calculation
but modify the Fourier transform of the diffusion
potential as proposed by Falicov and Cuevas [15]. In
Section 4, we compare experimental results with both
theories. A final conclusion is given in Section 5.

2. Existing theory and validity range
In the following, we consider elastic electron scatter-
ing and suppose that the impurities are singly ionized.

2.1. Existing theory
For a semiconductor with non-parabolic bands (NGS
or ZGS) Szymanska and Dietl [11] used properly
mixed s-type and p-type electron wave functions given
by Kane [7] and obtained for the relaxation time
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0
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L

(e
L

is the lattice constant),
+"h/(2p), h: Planck’s constant, m* the electron effec-
tive mass, e the electron change, k"EkE with k the
electron wave vector and F
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For F
*.1

we have only considered the first term
F@
*.1

(Equations 4.5a and b in [11]) because the second
term FA

*.1
becomes significant only for intrinsic ZGS,

which is not the case of interest. A@ and B@ are given by
Equation 2.7d in [11]. n"4k2k2, where k is the
screening length of the screened Coulomb potential
/(r)"q/jr exp (!r/k) where q is the charge of the
considered impurity, and r"ErE is the distance from
the impurity.

To obtain the expression F
*.1

, Szymanska and
Dietl followed the procedure described by Zawadzki
and Szymanska [9]. In this procedure, the Brooks—
Herring type Fourier transform of the diffusing poten-
tial is used. This treatment is based on calculating the
charge density around a given impurity as a function
of the distance. The solution of Poisson’s equation is
then obtained after linearization in q//k

B
¹, where

k
B

is the Boltzmann constant and ¹ is the temper-
ature. For an energy band described by Kane’s model
[7], this linearization leads to the screening length
(Equation A7 in [9])
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where °¸1@2
1

is a generalized Fermi integral;
a"E

F
/k

B
¹, b"k

B
¹/E

'
, E

F
: Fermi energy and E

g
:

energy gap.

2.2. Validity range of the screening length k
For an NGS or ZGS, the linearization is valid only if
q/;E

F
[9]. This inequality cannot be satisfied at

sufficiently small values of r due to the divergence of /.
For r"k, the condition requires

q2/(2.72jk);E
F

or k (nm)<k
1
"528.69/e

F
E
F
(meV)

(4)

Moreover, the use of Equation 3 implies that the
scattering potential is only screened by electrons. In
this case, it is necessary to neglect the interaction of
the charged atmosphere about a given ionized impu-
rity with a neighbouring impurity. This means that the
screening length is small compared with the distance
between ionized impurities. In other words, and if
spherical symmetry is assumed, it is valid only if Equa-
tion 3 leads to a screening length, k, that verifies

k(k
2
"A

3

4pB
1@3

A
1

N
I
B
1@3

(5)

where N
I
is the concentration of charged ions.

At low temperatures and for an uncompensated
degenerate semiconductor, the number of electrons
equals the number of singly ionized impurities and
k
2
"(3/4p)1@3 (1/n)1@3, which is the greatest value of

k
2

for a given n. A comparison of k with k
1

and k
2

is
shown in Fig. 1a and b for Hg

1~x
Cd

x
Te (x"19, 20

and 21%) at ¹"20K. Values of E are obtained from

F

the well known relation between n and E
F

in Kane’s
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Figure 1 Variation (a) k
1
/k versus electron concentration, n, and (b)

k
2
/k versus concentration of ionized impurities, N

I
"n, for

Hg
1~x

Cd
x
Te at ¹"20 K: (h) x"0.19, (n) x"0.2, (]) x"0.21.

TABLE I Values of parameters for Hg
1~x

Cd
x
Te

Quantity Value Reference

!
6
—!

8
energy gap

E
'
(x,¹) (eV) !0.302#1.93x [16]

#5.35]10~4(1!2x)¹
!0.81x2#0.832x3

Lattice constant, e
L

20.5!15.6x#5.7x2 [13]

Momentum matrix
element coupling, P, 1.953]10~5(18#3x)1@2 [17]
between conduction and
valence band, eV cm

Spin-orbit splitting, !0.53x#0.37x3#1.08 Fit with
*, eV data in

[18]

band model; the parameters used for calculation are
summarized in Table I. We see that k

1
/k(0.1

(k<k
1
) only for n'3]1020 m~3, n'6]1020 m~3

and n'1021 m~3 for x"19, 20 and 21%, respective-
ly. Equation 4 is then verified. But the N

I
"n screened

ions can be treated as independent scattering centres
(k(k

2
) only for x"21% and in the concentration

range 2]1020 to 1021 m~3.
In conclusion, for uncompensated materials, Equa-

tions 4 and 5 cannot be simultaneously satisfied.
For a compensated degenerate semiconductor the

screening length, k, is still given by Equation 3 and k

2

by Equation 5, but with N
I
'n. If the two conditions



Figure 2 Variation of q/(r"k
2
)/E

F
versus n/N`

D
for Hg

1~x
Cd

x
Te

at ¹"20 K and (a) n"1021 m~3, and a screening length of k, and
(b) n"1022 m~3 and a screening length of k

2
. (h) x"0.19, (n)

x"0.2, (]) x"0.21.

q/(r"k);E
F

and k(k
2

are verified, we must have

q/(r"k
2
);E

F
(6)

Variations of q/(r"k
2
)/E

F
versus n/N`

D
(n"1021

and 1022 m~3) are shown in Fig. 2a and b for
¹"20K. There curves prove that, in heavily com-
pensated Hg

1~x
Cd

x
Te (19)x (%))21), the lineariz-

ation of Poisson’s equation in q//k
B
¹ is meaningless

and the calculation leading to k (Equation 3) is no
longer valid.

We have now to find a mobility model suited to
a heavily compensated non-parabolic conduction
band semiconductor. Falicov and Cuevas [15] pro-
posed a modified version of existing theories
[14, 19, 20] for ionized impurity scattering. This the-
ory, valid in compensated semiconductors with para-
bolic bands, depends essentially on the pair correla-
tion function between acceptors and donors. We thus
modify the Szymanska—Dietl relaxation time using
the scattering potential proposed by Falicov and
Cuevas.

3. Modified theory
Because our theory is essentially an extension of that
of Szymanska and Dietl [11], which can be applied to
a compensated semiconductor, we follow their proced-
ure but with an appropriate Fourier transform of the

scattering potential, /(r). The transition probability
¼(k, k@) from either the j
;
"1/2 or j

;
"!1/2 state ( j

;
:

electron spin projection on the z-axis) is given by the
Equation 3.6 in [9], which can be written in the form

¼"

2p

+»2
Dq/( Dk!k@ D) D2d[E(k@)!E(k)]

]G1!4a2(1!a2) sin4
h

2

#C2b2A2c!
b

21@2B
2
!4(1!a2)D sin2

h

2
cos2

h

2H
(7)

where Dq/( Dk!k@ D ) D2 denotes the square of the
Fourier transform of the potential; a, b and c are the
three coefficients appearing in the electron Bloch func-
tion of Kane’s model, » is the volume, h is the angle
between k and k@. As the electron scattering is sup-
posed to be elastic, the Dirac function d[E(k@ )!E(k)]
is introduced.

For a spherical energy band with an arbitrary dis-
persion law having a minimum in k"0, the effective
mass entering the general transport theory is not de-
fined as for parabolic bands. One has to consider the
energy dependent effective mass given by [21]:
1/m*"1/(+2k) ­E/­k. The inverse relaxation time can
then be deduced from Equation 7 by (Equation 3.7
in [9])

1

s(k)
"

»N

8p3 P¼ (k, k@) (1!cos h) d3k@ (8)

where N is the number of charged ions in the
volume, ».

Falicov and Cuevas [15] considered a compensated
n-type semiconductor with a parabolic isotropic dis-
persion law. Following their treatment, and if a tem-
perature independent exponential distribution is
considered, one finds that the Fourier transform of
the screened Coulomb potential of an ion is (where
r"Dk!k@ D)

Dq/(r)D2"A
4pq2

j B
2 (2u2#r2)

r2(u2#r2)2
(9)

The static inverse correlation length, u, depending on
N

A
and N

D
, is given by (Equation 2.11 in [15])

u3"8p(N
D
!N

A
).

We are now able to calculate the relaxation time for
impurity scattering in compensated Hg

1~x
Cd

x
Te

(19)x (%))21) by using Equation 9 for
Dq/(Dk!k@ D ) D2.

In the spherical co-ordinate system the only non-
trivial integration is over h. Then, by making the same
substitutions as Falicov and Cuevas (Equations
2.13—2.15 in [15]) and replacing Equations 9 and 7 in
Equation 8 we obtain for the relaxation time

1

s(k)
"

2pe4N
I

+3j2

m*

k3
G

*.1
(10)
where N
I
"N/» is the concentration of charged ions.
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G
*.1

is given by

G
*.1

"ln(1#g)#
g

1#g
#G2b2C2c!

b

(2)1@2D
2

!4(b2#c2)H
g

1#g

!

1

2G2b2C2c!
b

(2)1@2D
2
!4(b2#c2)2H

]C1!
2

g2
ln(1#g)#

2

g(1#g)D (11)

with g"4k2u~2.
The first two terms in Equation 11 give the

Falicov—Cuevas contribution [15] to G
*.1

. The other
terms take into account the non-parabolicity of elec-
tron dispersion law following Kane’s treatment [7].
Very close to the bottom of the band, i.e. for E;E

'
,

we have a&1 and b&c&0. Therefore conduction
band wave functions contain only the s-component
and G

*.1
reduces to the Falicov—Cuevas expression

[15] obtained for the parabolic band.
Considering the energy dependent effective mass,

electron mobility, l, is obtained by using the general
expression that can be applied to a non-parabolic
band with a minimum in k"0 and spherical energy
surfaces [22, 23]

l"
4e

3h2n P
=

0

sk2A
­E

­kB A!
­ f

­EBdE (12)

where f is the Fermi—Dirac function.

4. Discussion
To show the inadequacy of the approximation of
linear screening, we compare both theories with ex-
perimental results. Data are for Hg

1~x
Cd

x
Te with

x&19.5% (grown by Travelling Heather Method at
S.A.T.: Société Anonyme de Telecommunication).
Two samples are considered (values at ¹"20 K)

sample 1: n&1021 m~3 and l
n
&30 m2V~1 s~1

sample 2: n&2]1022 m~3 and

l
n
&1 m2V~1 s~1

Characterization is made by simultaneously solving
neutrality and mobility equations over the 20—50 K
temperature range where the effects of phonons are
weak and carriers are scattered by the electric field of
ionized impurities. Both the relaxation times estab-
lished by Szymanska and Dietl [11] and our modified
expression are considered. Fig. 3a and b shows experi-
mental and theoretical curves obtained using the
Szymanska—Dietl model and our modified theory.
Table II summarizes the N

A
and N

D
values. We see

that it is always possible to find acceptor and donor
concentrations to fit the data. But use of the
Szymanska—Dietl expression yields n/Ǹ

D
&0.38 and

6.2]10~2 for samples 1 and 2, respectively. From
Fig. 2a and b we see that the statistical approach
leading to j is dubious for sample 1 and not applicable

at all for sample 2 as we must have q/(r"k

2
);
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Figure 3 Hall mobility for (a) sample 1, and (b) sample 2. Experi-
mental and theoretical curves (characteristics are given in Table II).
(h) experiment, (——) our expression, (]) the Szymanska—Dietl
model.

TABLE II Characteristics of the two samples using the
Szymanska and Dietl expression or the modified expression. The
origin of energy is taken at E

C
: bottom of the conduction band

Szymanska—Dietl Modified
expression expression

Sample 1
N

A
, m~3 1.5]1021 1.2]1021

N
D
, m~3 2.4]1021 2.13]1021

n/N`
D

&0.38 &0.43
e/ (r"k

2
)/E

F
&0.25

k
2
/k &0.5

Sample 2
N

A
, m~3 3.0]1023 1.55]1024

N
D
, m~3 5.2]1023 2.53]1024

E
D
!E

C
, meV 37.8 37.9

n/N`
D

&6.2]10~2 1.3]10~2

e/ (r"k
2
)/E

F
&0.3

k
2
/k &0.25

E
F
[q/(r"j);E

F
and k

2
'k]. If for lightly doped

materials (sample 1), the N
A

and N
D

concentrations are
in the same range, then for heavily doped materials
(sample 2) these values differ greatly. Consequently,
although the Szymanska—Dietl theory leads to a good
fit, the N

A
and N

D
concentrations obtained are mean-

ingless and unrealistic.
These two examples demonstrate how correlation
between charges has to be necessarily taken into ac-



count for a heavily compensated material in the study
of electrical behaviour of extended defects in
Hg

1~x
Cd

x
Te [24, 25].

5. Conclusions
We have shown that the relaxation time for electron
scattering by charged impurities calculated using
the Brooks—Herring treatment is not appropriate
for compensated (or not) Hg

1~x
Cd

x
Te (MCT)

(0.19)x)0.21). A relaxation time expression for im-
purity scattering in heavily compensated MCT is de-
veloped. The calculations are based on the Kane
model of band structure, including explicit mixing of
p-like components into the total wave function of the
conduction band. Following the Falicov—Cuevas
treatment, pair correlation function between acceptors
and donors is assumed. The relaxation time expres-
sion is established considering the temperature inde-
pendent exponential pair correlation function between
acceptors and donors introduced by Falicov and
Cuevas. At least we show how experimental results
can be misinterpreted.
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